organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-Bromo-5-bromomethyl-2-phenoxy-1,3,2-dioxaphosphorinan-2-one

Hoong-Kun Fun,^a* Suchada Chantrapromma,^b‡ Avijit Kr. Adak,^c Annada C. Maity^d and Shyamaprosad Goswami^d

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malavsia, ^bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, ^cDepartment of Chemistry, Purdue University, West Lafayette, IN 47907, USA, and ^dDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India

Correspondence e-mail: hkfun@usm.my

Received 12 October 2008; accepted 15 October 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.008 Å; R factor = 0.047; wR factor = 0.142; data-to-parameter ratio = 24.4.

In the title 1.3.2-dioxaphosphorinane derivative, $C_{10}H_{11}Br_2O_4P$, the 1,3,2-dioxaphosphorinane ring adopts a chair conformation, having the P=O bond equatorially oriented and the phenoxy group axially oriented. The bromo substituent is in an axial position opposite to the phenoxy group and the bromomethyl group is in an equatorial position opposite to the P=O bond. In the crystal packing, molecules are linked through weak C-H···O and C-H···Br interactions to form chains along the b axis. The chains are arranged into sheets parallel to the ab plane. In adjacent sheets, molecules are arranged in an antiparallel fashion. Intermolecular $C-H \cdots \pi$ interactions are also observed.

Related literature

For values of bond lengths and angles, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975). For related structures, see, for example: Jones et al. (1984); Polozov et al. of (1995). For related literature and applications dioxaphosphorinane derivatives, see, for example: Goswami (1993); Goswami & Adak (2002); Pilato et al. (1991); Taylor & Goswami (1992).

‡ Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Crystal data

$C_{10}H_{11}Br_2O_4P$	V = 1291.88 (4) Å ³
$M_r = 385.96$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 12.1315 (3) Å	$\mu = 6.40 \text{ mm}^{-1}$
b = 6.3095 (1) Å	T = 296 (2) K
c = 16.8901 (3) Å	$0.45 \times 0.10 \times 0.05 \text{ mm}$
$\beta = 92.196 \ (2)^{\circ}$	

Data collection

Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min} = 0.156, T_{\max} = 0.726$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	154 parameters
$wR(F^2) = 0.142$	H-atom parameters constrained
S = 0.99	$\Delta \rho_{\rm max} = 0.67 \ {\rm e} \ {\rm \AA}^{-3}$
3756 reflections	$\Delta \rho_{\rm min} = -0.91 \text{ e } \text{\AA}^{-3}$

16007 measured reflections

 $R_{\rm int} = 0.072$

3756 independent reflections 1952 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the phenyl ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2-H2A\cdots O3^{i}$	0.97	2.35	3.217 (6)	148
$C4-H4A\cdots O3^{i}$	0.97	2.53	3.362 (6)	144
$C2-H2B\cdots Cg1^{ii}$	0.97	2.81	3.755 (5)	166
$C3-H3C\cdots Cg1^{iii}$	0.97	2.70	3.560 (5)	148

Symmetry codes: (i) x, y + 1, z; (ii) $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) -x + 2, -y + 1, -z.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

AKA, ACM and SG acknowledge the DST (grant No. SR/ S1/OC-13/2005), Government of India, for financial support. ACM thanks the UGC, Government of India, for a fellowship. The authors also thank the Universiti Sains Malaysia for Research University Golden Goose Grant No. 1001/PFIZIK/ 811012.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2349).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Goswami, S. P. (1993). Heterocycles, 35, 1551-1570.

Goswami, S. P. & Adak, A. K. (2002). Tetrahedron Lett. 43, 503-505.

Jones, P. G., Sheldrick, G. M., Kirby, A. J. & Briggs, A. J. (1984). Acta Cryst. C40, 1061-1065.

- Pilato, R. S., Erickson, K. A., Greaney, M. A., Stiefel, E. I., Goswami, S. P., Kilpatric, L., Spiro, T. G., Taylor, E. C. & Rhiengold, A. L. (1991). J. Am. Chem. Soc. 113, 9372–9374.
- Polozov, A. M., Litvinov, I. A., Kataeva, O. N., Stolov, A. A., Yarkova, E. G., Khotinen, A. V. & Klimovitskii, E. N. (1995). J. Mol. Struct. 356, 125–130.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
 Taylor, E. C. & Goswami, S. P. (1992). Tetrahedron Lett. 32, 7357–7360.

supplementary materials

Acta Cryst. (2008). E64, o2228-o2229 [doi:10.1107/S1600536808033631]

5-Bromo-5-bromomethyl-2-phenoxy-1,3,2-dioxaphosphorinan-2-one

H.-K. Fun, S. Chantrapromma, A. K. Adak, A. C. Maity and S. Goswami

Comment

Six-membered cyclic phosphates are important constituents present in a number of biologically important molecules *e.g.* cyclic adenosine monophosphate (cAMP) and the Compound *Z*, a precursor of the molybdenum cofactor (Moco) (Goswami, 1993). They especially play key roles in many biosynthetic pathways and comprise structural sub-units of many physiologically important materials. In our synthetic studies (Pilato *et al.*, 1991; Taylor & Goswami, 1992) on the molybdenum cofactor, we are interested to have an efficient synthesis of cyclic dihydroxyacetone phosphate (CDHAP) (Goswami & Adak, 2002). Reaction of phosphate triesters with *N*-bromosuccinimide (NBS) results in the formation of a dibromo derivative (Fig. 1).

In the title 1,3,2-dioxaphosphorinane derivative (Fig. 1), $C_{10}H_{11}Br_2O_4P$, the 1,3,2-dioxaphosphorinane ring adopts a slightly flattened chair conformation with the puckering parameter (Cremer & Pople, 1975) Q = 0.496 (4) Å, θ = 7.4 (5)° and φ = 177 (4)°, having the P=O bond equatorially attached and the phenoxy substituent axially attached with the torsion angle O1—P1—O4—O5 = 82.6 (4)°. The orientation of the phenoxy group is not co-planar to the 1,3,2-dioxaphosphorinane ring as can be indicated by the torsion angle P1—O4—C5—C6 of -108.2 (4)°. The bromo substituent is in the opposite axial position to the phenoxy substituent and the methylbromo group is in an opposite equatorial position to the P=O bond. The bond lengths and angles in (I) are within normal ranges (Allen *et al.*, 1987) and are comparable to related structures (Jones *et al.*, 1984; Polozov *et al.*, 1995). The closest Br…Br distance is 3.5484 (9) Å.

In the crystal packing shown in Fig. 2, the molecules are linked through weak C—H···O interactions (Table 1) to form chains along the *b* axis which generate *S*(6) ring motifs (Bernstein *et al.*, 1995). The chains are arranged into sheets parallel to the *ab* plane. In the adjacent sheets, the molecules are arranged in an anti-parallel fashion (Fig. 3). The adjacent sheets are connected through weak C—H···O interactions (Table 1) and Br···Br short contacts with the Br···Br distance of 3.8771 (9) Å (symmetry code: 1 - x, 1/2 + y, 1/2 - z). The crystal is stabilized by weak C—H···O, C—H···Br interactions and C—H··· π interactions (Table 1); *Cg*1 is the centroid of the C5–C10 ring.

Experimental

A solution of 5-methylene-2-oxo-2-phenoxy-[1,3,2]-dioxaphosphorinane (0.4 g, 1.76 mmol), doubly crystallized *N*-bromosuccinimide (0.38 g, 1.78 mmol) and azobisisobutyronitrile (10 mg) in dry CCl₄ (40 ml) was heated under reflux in the presence of a 60 W lamp for 4 h. By this time, a maximum of 80% of the starting materials were converted into the product. Upon prolonged heating for a period of 8 h, no improvement has been observed with respect to yield nor new spot was observed as monitored by thin layer chromatography. The CCl₄ layer was then stripped off and the gummy material was dissolved in dichloromethane (100 ml) and washed well with water (2 × 100 ml) and then with brine. The organic layer was dried (Na₂SO₄) and concentrated to afford the crude product as a light brown gum which was passed through a silica gel (100–200 mesh) column eluting with dichloromethane to get the pure title compound as a white crystalline solid (0.32 g, 60%; m.p. 361–362 K).

Refinement

All H atoms were constrained in a riding motion approximation, with C_{aryl} —H = 0.93 Å and 0.97 Å for CH₂. The U_{iso} (H) values were constrained to be $1.2U_{eq}$ of the carrier atom. The highest residual electron density peak is located at 0.72 Å from Br1 and the deepest hole is located at 0.61 Å from Br2.

Figures

Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.

Fig. 2. The crystal packing of (I), viewed along the c axis showing chains along the b axis. Hydrogen bonds were shown as dash lines.

Fig. 3. The crystal packing of (I), viewed along the *b* axis showing the anti-parallel arrangement of the adjacent sheets. Hydrogen bonds and Br \cdots Br short contact were shown as dash lines.

5-Bromo-5-bromomethyl-2-phenoxy-1,3,2-dioxaphosphorinan-2-one

Crystal data	
$C_{10}H_{11}Br_2O_4P$	$F_{000} = 752$
$M_r = 385.96$	$D_{\rm x} = 1.984 { m Mg m}^{-3}$
Monoclinic, $P2_1/c$	Melting point = $361-362$ K
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 12.1315 (3) Å	Cell parameters from 3756 reflections
b = 6.3095 (1) Å	$\theta = 2.4 - 30.0^{\circ}$
<i>c</i> = 16.8901 (3) Å	$\mu = 6.40 \text{ mm}^{-1}$

$\beta = 92.196 \ (2)^{\circ}$	T = 296 (2) K
$V = 1291.88 (4) \text{ Å}^3$	Needle, colourless
Z = 4	$0.45 \times 0.10 \times 0.05 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer	3756 independent reflections
Radiation source: fine-focus sealed tube	1952 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.072$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{max} = 30.0^{\circ}$
T = 296(2) K	$\theta_{\min} = 2.4^{\circ}$
ω scans	$h = -15 \rightarrow 17$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -8 \rightarrow 8$
$T_{\min} = 0.156, T_{\max} = 0.726$	$l = -22 \rightarrow 23$
16007 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameters constrained
$wR(F^2) = 0.142$	$w = 1/[\sigma^2(F_o^2) + (0.0636P)^2 + 0.3299P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.99	$(\Delta/\sigma)_{\rm max} = 0.001$
3756 reflections	$\Delta \rho_{max} = 0.67 \text{ e } \text{\AA}^{-3}$
154 parameters	$\Delta \rho_{min} = -0.91 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.60424 (5)	0.36096 (9)	0.21315 (3)	0.0610 (2)

supplementary materials

Br2	0.53167 (5)	0.78769 (10)	0.08461 (4)	0.0719 (2)
P1	0.88523 (11)	0.20179 (19)	0.12969 (8)	0.0438 (3)
01	0.8686 (3)	0.3316 (5)	0.20749 (18)	0.0463 (8)
O2	0.7744 (3)	0.2261 (5)	0.0802 (2)	0.0495 (8)
O3	0.9159 (3)	-0.0157 (5)	0.1448 (3)	0.0677 (11)
O4	0.9665 (3)	0.3340 (5)	0.0784 (2)	0.0504 (8)
C1	0.7093 (4)	0.5327 (6)	0.1542 (3)	0.0376 (10)
C2	0.8186 (4)	0.5375 (7)	0.2016 (3)	0.0443 (11)
H2A	0.8687	0.6340	0.1764	0.053*
H2B	0.8063	0.5908	0.2544	0.053*
C3	0.7229 (4)	0.4330 (7)	0.0740 (3)	0.0453 (11)
H3B	0.6511	0.4192	0.0472	0.054*
H3C	0.7677	0.5250	0.0422	0.054*
C4	0.6653 (4)	0.7573 (7)	0.1467 (3)	0.0519 (13)
H4A	0.7214	0.8449	0.1235	0.062*
H4B	0.6535	0.8115	0.1994	0.062*
C5	1.0807 (4)	0.3235 (7)	0.0921 (3)	0.0408 (11)
C6	1.1335 (5)	0.4950 (9)	0.1258 (3)	0.0619 (15)
H6A	1.0939	0.6132	0.1413	0.074*
C7	1.2469 (6)	0.4884 (12)	0.1362 (3)	0.077 (2)
H7A	1.2841	0.6040	0.1585	0.092*
C8	1.3055 (5)	0.3123 (14)	0.1139 (3)	0.077 (2)
H8A	1.3817	0.3087	0.1217	0.092*
C9	1.2510 (5)	0.1428 (10)	0.0803 (3)	0.0640 (16)
H9A	1.2904	0.0241	0.0651	0.077*
C10	1.1368 (4)	0.1479 (8)	0.0688 (3)	0.0494 (12)
H10A	1.0993	0.0336	0.0458	0.059*

Atomic displacement parameters (\AA^2)

U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
0.0439 (3)	0.0719 (4)	0.0680 (4)	-0.0032 (3)	0.0128 (3)	0.0258 (3)
0.0560 (4)	0.0786 (4)	0.0810 (5)	0.0177 (3)	0.0001 (3)	0.0093 (3)
0.0372 (7)	0.0360 (6)	0.0585 (8)	-0.0025 (5)	0.0049 (6)	0.0049 (5)
0.0419 (19)	0.0494 (18)	0.0472 (19)	0.0009 (15)	-0.0047 (15)	0.0109 (14)
0.048 (2)	0.0423 (17)	0.058 (2)	0.0006 (15)	-0.0007 (17)	-0.0115 (15)
0.056 (2)	0.0374 (18)	0.110 (3)	0.0033 (17)	0.011 (2)	0.0135 (19)
0.0383 (19)	0.0516 (19)	0.062 (2)	0.0020 (15)	0.0096 (16)	0.0124 (16)
0.038 (3)	0.035 (2)	0.040 (2)	-0.0041 (19)	0.006 (2)	0.0020 (18)
0.041 (3)	0.047 (3)	0.044 (3)	0.001 (2)	-0.003 (2)	-0.004 (2)
0.040 (3)	0.052 (3)	0.043 (3)	0.001 (2)	-0.005 (2)	0.000(2)
0.044 (3)	0.041 (3)	0.070 (4)	-0.001 (2)	-0.002 (3)	-0.001 (2)
0.039 (3)	0.046 (3)	0.037 (2)	-0.007 (2)	0.008 (2)	0.0027 (19)
0.076 (4)	0.056 (3)	0.055 (3)	-0.022 (3)	0.020 (3)	-0.009 (3)
0.082 (5)	0.097 (5)	0.050 (3)	-0.048 (4)	-0.001 (3)	-0.007 (3)
0.048 (4)	0.137 (6)	0.045 (3)	-0.029 (4)	-0.008 (3)	0.022 (4)
0.049 (3)	0.088 (4)	0.055 (3)	0.010 (3)	0.004 (3)	0.014 (3)
0.043 (3)	0.058 (3)	0.048 (3)	-0.005 (2)	0.004 (2)	-0.003 (2)
	U^{11} 0.0439 (3) 0.0560 (4) 0.0372 (7) 0.0419 (19) 0.048 (2) 0.056 (2) 0.0383 (19) 0.038 (3) 0.041 (3) 0.040 (3) 0.044 (3) 0.039 (3) 0.076 (4) 0.082 (5) 0.048 (4) 0.049 (3) 0.043 (3)	U^{11} U^{22} $0.0439(3)$ $0.0719(4)$ $0.0560(4)$ $0.0786(4)$ $0.0372(7)$ $0.0360(6)$ $0.0419(19)$ $0.0494(18)$ $0.048(2)$ $0.0423(17)$ $0.056(2)$ $0.0374(18)$ $0.0383(19)$ $0.0516(19)$ $0.038(3)$ $0.035(2)$ $0.041(3)$ $0.047(3)$ $0.044(3)$ $0.041(3)$ $0.039(3)$ $0.046(3)$ $0.076(4)$ $0.056(3)$ $0.082(5)$ $0.097(5)$ $0.048(4)$ $0.137(6)$ $0.043(3)$ $0.058(3)$	U^{11} U^{22} U^{33} $0.0439(3)$ $0.0719(4)$ $0.0680(4)$ $0.0560(4)$ $0.0786(4)$ $0.0810(5)$ $0.0372(7)$ $0.0360(6)$ $0.0585(8)$ $0.0419(19)$ $0.0494(18)$ $0.0472(19)$ $0.048(2)$ $0.0423(17)$ $0.058(2)$ $0.056(2)$ $0.0374(18)$ $0.110(3)$ $0.0383(19)$ $0.0516(19)$ $0.062(2)$ $0.038(3)$ $0.035(2)$ $0.040(2)$ $0.041(3)$ $0.047(3)$ $0.044(3)$ $0.044(3)$ $0.047(3)$ $0.043(3)$ $0.044(3)$ $0.041(3)$ $0.070(4)$ $0.039(3)$ $0.046(3)$ $0.055(3)$ $0.076(4)$ $0.056(3)$ $0.055(3)$ $0.082(5)$ $0.097(5)$ $0.050(3)$ $0.048(4)$ $0.137(6)$ $0.048(3)$ $0.043(3)$ $0.058(3)$ $0.048(3)$	U^{11} U^{22} U^{33} U^{12} 0.0439 (3)0.0719 (4)0.0680 (4) $-0.0032 (3)$ 0.0560 (4)0.0786 (4)0.0810 (5)0.0177 (3)0.0372 (7)0.0360 (6)0.0585 (8) $-0.0025 (5)$ 0.0419 (19)0.0494 (18)0.0472 (19)0.0009 (15)0.048 (2)0.0423 (17)0.058 (2)0.0006 (15)0.056 (2)0.0374 (18)0.110 (3)0.0033 (17)0.0383 (19)0.0516 (19)0.062 (2)0.0020 (15)0.038 (3)0.035 (2)0.040 (2) $-0.0041 (19)$ 0.041 (3)0.047 (3)0.044 (3)0.001 (2)0.044 (3)0.047 (3)0.043 (3)0.001 (2)0.044 (3)0.041 (3)0.070 (4) $-0.001 (2)$ 0.039 (3)0.046 (3)0.037 (2) $-0.007 (2)$ 0.076 (4)0.056 (3)0.055 (3) $-0.022 (3)$ 0.082 (5)0.097 (5)0.050 (3) $-0.048 (4)$ 0.048 (4)0.137 (6)0.045 (3) $-0.029 (4)$ 0.049 (3)0.058 (3)0.048 (3) $-0.005 (2)$	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0439 (3)0.0719 (4)0.0680 (4) -0.0032 (3)0.0128 (3)0.0560 (4)0.0786 (4)0.0810 (5)0.0177 (3)0.0001 (3)0.0372 (7)0.0360 (6)0.0585 (8) -0.0025 (5)0.0049 (6)0.0419 (19)0.0494 (18)0.0472 (19)0.0009 (15) -0.0047 (15)0.048 (2)0.0423 (17)0.058 (2)0.0006 (15) -0.0007 (17)0.056 (2)0.0374 (18)0.110 (3)0.0033 (17)0.011 (2)0.0383 (19)0.0516 (19)0.062 (2)0.0020 (15)0.0096 (16)0.038 (3)0.035 (2)0.040 (2) -0.0041 (19)0.006 (2)0.041 (3)0.047 (3)0.044 (3)0.001 (2) -0.003 (2)0.044 (3)0.052 (3)0.043 (3)0.001 (2) -0.005 (2)0.044 (3)0.041 (3)0.055 (3) -0.022 (3) 0.020 (3)0.056 (4)0.056 (3)0.055 (3) -0.022 (3) 0.020 (3)0.056 (4)0.056 (3)0.055 (3) -0.029 (4) -0.008 (3)0.048 (4)0.137 (6)0.045 (3) -0.029 (4) -0.008 (3)0.049 (3)0.088 (4)0.055 (3) -0.005 (2) 0.004 (3)

Geometric parameters (Å, °)

Br2—C41.907 (5)C4—H4A0.9700P1—O31.442 (4)C4—H4B0.9700P1—O21.563 (4)C5—C101.365P1—O11.568 (3)C5—C61.371P1—O41.576 (3)C6—C71.380O1—C21.436 (5)C6—H6A0.9300O2—C31.450 (6)C7—C81.380O4—C51.398 (6)C7—H7A0.9300C1—C41.518 (6)C8—C91.369C1—C41.518 (6)C9—C101.392C2—H2A0.9700C9—H9A0.9300C2—H2B0.9700C10—H10A0.9300C3—H3B0.9700C10—H10A0.9300O3—P1—O2113.5 (2)H3B—C3—H3C107.9O3—P1—O1112.9 (2)C1—C4—H4A108.4O2—P1—O1105.14 (18)C1—C4—H4A108.4O2—P1—O4106.73 (19)Br2—C4—H4B108.4)) (7) (7) (9)) (10)) (9)) (8)))
P1- -03 1.442 (4)C4-H4B0.9700P1- -02 1.563 (4)C5- $-C10$ 1.365P1- -01 1.568 (3)C5- $-C6$ 1.371P1- -04 1.576 (3)C6- $-C7$ 1.380O1- $-C2$ 1.436 (5)C6- $-H6A$ 0.9300O2- $-C3$ 1.450 (6)C7- $-C8$ 1.380O4- $-C5$ 1.398 (6)C7- $-H7A$ 0.9300C1- $-C3$ 1.509 (6)C8- $-C9$ 1.369C1- $-C4$ 1.518 (6)C8- $-H8A$ 0.9300C1- $-C2$ 1.523 (6)C9- $-C10$ 1.392C2- $-H2A$ 0.9700C9- $-H9A$ 0.9300C2- $-H2B$ 0.9700C10- $-H10A$ 0.9300C3- $-H3B$ 0.9700C10- $-H10A$ 0.9300O3- $-P1-O2$ 113.5 (2)H3B- $-C3-H3C$ 107.9O3- $-P1-O1$ 105.14 (18)C1- $-C4-H4A$ 108.4O2- $-P1-O4$ 106.73 (19)Br2- $-C4-H4B$ 108.4O1- $-P1-O4$ 101.35 (19)C1- $-C4-H4B$ 108.4) (7) (9)) (10)) (9)) (8))
P1-O2 $1.563 (4)$ C5-C10 1.365 P1-O1 $1.568 (3)$ C5-C6 1.371 P1-O4 $1.576 (3)$ C6-C7 1.380 O1-C2 $1.436 (5)$ C6-H6A 0.9300 O2-C3 $1.450 (6)$ C7-C8 1.380 O4-C5 $1.398 (6)$ C7-H7A 0.9300 C1-C3 $1.509 (6)$ C8-C9 1.369 C1-C4 $1.518 (6)$ C8-H8A 0.9300 C1-C2 $1.523 (6)$ C9-C10 1.392 C2-H2A 0.9700 C9-H9A 0.9300 C3-H3B 0.9700 C10-H10A 0.9300 O3-P1-O2 $113.5 (2)$ H3B-C3-H3C 107.9 O3-P1-O1 $112.9 (2)$ C1-C4-H4A 108.4 O2-P1-O1 $105.14 (18)$ C1-C4-H4A 108.4 O2-P1-O4 $101.35 (19)$ C1-C4-H4B 108.4 O1-P1-O4 $106.73 (19)$ Br2-C4-H4B 108.4	<pre>(7) (7) (9)) (10)) (9)) (8)) (3)</pre>
P1-O1 $1.568 (3)$ C5-C6 1.371 P1-O4 $1.576 (3)$ C6-C7 1.380 O1-C2 $1.436 (5)$ C6-H6A 0.9300 O2-C3 $1.450 (6)$ C7-C8 1.380 O4-C5 $1.398 (6)$ C7-H7A 0.9300 C1-C3 $1.509 (6)$ C8-C9 1.369 C1-C4 $1.518 (6)$ C8-H8A 0.9300 C1-C2 $1.523 (6)$ C9-C10 1.392 C2-H2A 0.9700 C9-H9A 0.9300 C3-H3B 0.9700 C10-H10A 0.9300 O3-P1-O2 $113.5 (2)$ H3B-C3-H3C 107.9 O3-P1-O1 $112.9 (2)$ C1-C4-H4A 108.4 O2-P1-O1 $105.14 (18)$ C1-C4-H4A 108.4 O2-P1-O4 $101.35 (19)$ C1-C4-H4B 108.4	(7) (9)) (10)) (9)) (8)))
P1O4 $1.576 (3)$ C6C7 1.380 O1C2 $1.436 (5)$ C6H6A 0.9300 O2C3 $1.450 (6)$ C7C8 1.380 O4C5 $1.398 (6)$ C7H7A 0.9300 C1C3 $1.509 (6)$ C8C9 1.369 C1C4 $1.518 (6)$ C8H8A 0.9300 C1C2 $1.523 (6)$ C9C10 1.392 C2H2A 0.9700 C9H9A 0.9300 C2H2B 0.9700 C10H10A 0.9300 C3H3B 0.9700 C1C4H3C 107.9 O3P1O1 $112.9 (2)$ C1C4H3C 107.9 O3P1O1 $105.14 (18)$ C1C4H4A 108.4 O2P1O4 $101.35 (19)$ C1C4H4B 108.4 O1P1O4 $10673 (19)$ Br2C4H4B 108.4	(9)) (10)) (9)) (8)))
O1-C2 $1.436 (5)$ $C6-H6A$ $0.930($ $O2-C3$ $1.450 (6)$ $C7-C8$ 1.380 $O4-C5$ $1.398 (6)$ $C7-H7A$ $0.930($ $C1-C3$ $1.509 (6)$ $C8-C9$ 1.369 $C1-C4$ $1.518 (6)$ $C8-H8A$ $0.930($ $C1-C2$ $1.523 (6)$ $C9-C10$ 1.392 $C2-H2A$ 0.9700 $C9-H9A$ $0.930($ $C2-H2B$ 0.9700 $C10-H10A$ $0.930($ $C3-H3B$ 0.9700 $C1-C4-Br2$ 115.4 $O3-P1-O1$ $112.9 (2)$ $C1-C4-Br2$ 115.4 $O2-P1-O1$ $105.14 (18)$ $C1-C4-H4A$ 108.4 $O3-P1-O4$ $116.0 (2)$ $Br2-C4-H4B$ 108.4 $O1-P1-O4$ $106.73 (19)$ $Br2-C4-H4B$ 108.4) (10)) (9)) (8)))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(10)) (9)) (8)))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$) (9)) (8))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(9)) (8))
C1—C4 $1.518 (6)$ C8—H8A $0.930($ C1—C2 $1.523 (6)$ C9—C10 1.392 C2—H2A 0.9700 C9—H9A $0.930($ C2—H2B 0.9700 C10—H10A $0.930($ C3—H3B 0.9700 C10—H10A $0.930($ C3—H3B 0.9700 C1—C4—H3C 107.9 O3—P1—O2 $113.5 (2)$ H3B—C3—H3C 107.9 O3—P1—O1 $112.9 (2)$ C1—C4—H4A 108.4 O2—P1—O1 $105.14 (18)$ C1—C4—H4A 108.4 O2—P1—O4 $101.35 (19)$ C1—C4—H4B 108.4 O1—P1—O4 $106.73 (19)$ Br2—C4—H4B 108.4) (8)))
C1—C2 $1.523 (6)$ C9—C10 1.392 C2—H2A 0.9700 C9—H9A 0.9300 C2—H2B 0.9700 C10—H10A 0.9300 C3—H3B 0.9700 C10—H10A 0.9300 O3—P1—O2 $113.5 (2)$ H3B—C3—H3C 107.9 O3—P1—O1 $112.9 (2)$ C1—C4—Br2 $115.4 (2)$ O2—P1—O1 $105.14 (18)$ C1—C4—H4A $108.4 (2)$ O3—P1—O4 $116.0 (2)$ Br2—C4—H4A $108.4 (2)$ O3—P1—O4 $101.35 (19)$ C1—C4—H4B $108.4 (2)$	(8)))
C2—H2A 0.9700 C9—H9A 0.9300 C2—H2B 0.9700 C10—H10A 0.9300 C3—H3B 0.9700 C10—H10A 0.9300 O3—P1—O2 113.5 (2) H3B—C3—H3C 107.9 O3—P1—O1 112.9 (2) C1—C4—Br2 115.4 (2) O2—P1—O1 105.14 (18) C1—C4—H4A 108.4 O3—P1—O4 116.0 (2) Br2—C4—H4A 108.4 O1—P1—O4 106.73 (19) Br2—C4—H4B 108.4)) (3)
C2—H2B 0.9700 C10—H10A 0.9300 C3—H3B 0.9700 0.9700 0.9700 O3—P1—O2 113.5 (2) H3B—C3—H3C 107.9 O3—P1—O1 112.9 (2) C1—C4—Br2 115.4 (2) O2—P1—O1 105.14 (18) C1—C4—H4A 108.4 O3—P1—O4 116.0 (2) Br2—C4—H4A 108.4 O2—P1—O4 101.35 (19) C1—C4—H4B 108.4) (3)
C3—H3B 0.9700 O3—P1—O2 113.5 (2) H3B—C3—H3C 107.9 O3—P1—O1 112.9 (2) C1—C4—Br2 115.4 O2—P1—O1 105.14 (18) C1—C4—H4A 108.4 O3—P1—O4 116.0 (2) Br2—C4—H4A 108.4 O2—P1—O4 101.35 (19) C1—C4—H4B 108.4	(3)
O3—P1—O2 113.5 (2) H3B—C3—H3C 107.9 O3—P1—O1 112.9 (2) C1—C4—Br2 115.4 O2—P1—O1 105.14 (18) C1—C4—H4A 108.4 O3—P1—O4 116.0 (2) Br2—C4—H4A 108.4 O2—P1—O4 101.35 (19) C1—C4—H4B 108.4	(3)
O3—P1—O1 112.9 (2) C1—C4—Br2 115.4 O2—P1—O1 105.14 (18) C1—C4—H4A 108.4 O3—P1—O4 116.0 (2) Br2—C4—H4A 108.4 O2—P1—O4 101.35 (19) C1—C4—H4B 108.4 O1—P1—O4 106.73 (19) Br2—C4—H4B 108.4	(3)
O2—P1—O1 105.14 (18) C1—C4—H4A 108.4 O3—P1—O4 116.0 (2) Br2—C4—H4A 108.4 O2—P1—O4 101.35 (19) C1—C4—H4B 108.4 O1—P1—O4 106 73 (19) Br2—C4—H4B 108.4	1
O3—P1—O4 116.0 (2) Br2—C4—H4A 108.4 O2—P1—O4 101.35 (19) C1—C4—H4B 108.4 O1—P1—O4 106 73 (19) Br2—C4—H4B 108.4	
O2—P1—O4 101.35 (19) C1—C4—H4B 108.4 O1—P1—O4 106 73 (19) Br2—C4—H4B 108.4	
01_P1_04 106 73 (19) Rr2_C4_H4R 108 4	
C2—O1—P1 118.8 (3) H4A—C4—H4B 107.5	
C3—O2—P1 119.1 (3) C10—C5—C6 122.0	(5)
C5—O4—P1 121.4 (3) C10—C5—O4 119.5	(4)
C3—C1—C4 111.3 (4) C6—C5—O4 118.4	(5)
C3—C1—C2 110.9 (4) C5—C6—C7 118.5	(6)
C4—C1—C2 108.8 (4) C5—C6—H6A 120.8	
C3—C1—Br1 108.6 (3) C7—C6—H6A 120.8	
C4—C1—Br1 108.9 (3) C8—C7—C6 120.7	(6)
C2—C1—Br1 108.2 (3) C8—C7—H7A 119.6	
O1—C2—C1 112.0 (4) C6—C7—H7A 119.6	
O1—C2—H2A 109.2 C9—C8—C7 119.8	(6)
C1—C2—H2A 109.2 C9—C8—H8A 120.1	
O1—C2—H2B 109.2 C7—C8—H8A 120.1	
C1—C2—H2B 109.2 C8—C9—C10 120.1	(6)
H2A—C2—H2B 107.9 C8—C9—H9A 120.0	
O2—C3—C1 111.8 (4) C10—C9—H9A 120.0	
O2—C3—H3B 109.3 C5—C10—C9 118.9	(5)
C1—C3—H3B 109.3 C5—C10—H10A 120.5	
O2—C3—H3C 109.3 C9—C10—H10A 120.5	
C1—C3—H3C 109.3	
O3—P1—O1—C2 -168.7 (3) C2—C1—C3—O2 53.4 (4	5)
O2—P1—O1—C2 -44.4 (4) Br1—C1—C3—O2 -65.5	(4)
O4—P1—O1—C2 62.7 (4) C3—C1—C4—Br2 54.6 (5	5)
	(2)
$U_3 - P_1 - U_2 - U_3$ 168.0 (3) $U_2 - U_1 - U_4 - Br_2$ 177.1 s	(3)

supplementary materials

O4—P1—O2—C3	-66.9 (4)	P1	74.5 (5)
O3—P1—O4—C5	-44.2 (4)	P1	-108.2 (4)
O2—P1—O4—C5	-167.6 (3)	C10-C5-C6-C7	0.0 (8)
O1—P1—O4—C5	82.6 (4)	O4—C5—C6—C7	-177.3 (4)
P1	52.5 (5)	C5—C6—C7—C8	-0.6 (9)
C3—C1—C2—O1	-54.0 (5)	C6—C7—C8—C9	0.7 (9)
C4—C1—C2—O1	-176.7 (4)	C7—C8—C9—C10	-0.2 (9)
Br1-C1-C2-O1	65.1 (4)	C6—C5—C10—C9	0.4 (7)
P1—O2—C3—C1	-52.0 (5)	O4—C5—C10—C9	177.7 (4)
C4—C1—C3—O2	174.6 (4)	C8—C9—C10—C5	-0.4 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
C2—H2A···O3 ⁱ	0.97	2.35	3.217 (6)	148
C3—H3B···Br2	0.97	2.82	3.233 (5)	106
C4—H4A···O3 ⁱ	0.97	2.53	3.362 (6)	144
C2—H2B···Cg1 ⁱⁱ	0.97	2.81	3.755 (5)	166
C3—H3C···Cg1 ⁱⁱⁱ	0.97	2.70	3.560 (5)	148

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) -*x*+2, *y*+1/2, -*z*+1/2; (iii) -*x*+2, -*y*+1, -*z*.

Fig. 1

Fig. 2

Fig. 3